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A modified weakest-link model for describing 
strength variability of Kevlar aramid fibres 

W. F. KNOFF 
E. L Du Pont De Nemours & Co. Inc., Spruance Research Laboratory, Richmond, Virginia, 
USA 

The mathematical description of a weakest-link model for fibre strength was developed in 
which there is no assumption regarding the test length with respect to the link length. The 
filament strength as a function of test length of three commercial Kevlar aramid yarns was 
compared with the model predictions. The model was found to fit the data well. 

1. In troduc t ion  
The variability in tensile strength of fibres used for 
reinforcing composite structures is an important factor 
in determining the tensile strength of the final struc- 
ture relative to the actual average strength of the 
individual filaments. Much theoretical analysis has 
been carried out in an effort to understand the tensile 
failure processes of fibre arrays and to predict the 
strength of an array based on its filament properties 
[1-7]. One aspect of this effort is the characterization 
of the magnitude and nature of the filament strength 
variability. 

Kevlar* aramid is a high modulus and strength fibre 
produced by E. I. Du Pont De Nemours & Co. Inc. It 
is manufactured by spinning a liquid crystalline sol- 
ution of poly p-phenylene terephthamide (PPD-T) [8]. 
This technique permits alignment of the rigid PPD-T 
molecules along the fibre axis. The high degree of 
molecular orientation is the primary fibre structural 
property responsible for the high modulus and strength 
[9, 10]. Three types of Kevlar are available. Kevlar and 
Kevlar 29 are high strength and modulus products 
which are used mainly in ballistics, ropes, cables and 
rubber reinforcing applications. Kevlar 49 has a 
higher modulus than the others [11]. Kevlar 49 is used 
primarily in composites for aerospace applications. 

A fibre strength model commonly employed to 
describe mean strength and variability and their 
dependence on test length is the weakest link theory 
[12]. This model assumes that the length of fibre tested 
can, with respect to strength, be described as a series 
of a large number of randomly assembled links of 
which the strengths are independent, identically dis- 
tributed, random variables with a common cumulative 
distribution function. The cumulative distribution of 
the fibre strengths is then given by 

F,(s) = 1 - [1 - F(s)]" (1) 

where F(s) is the common cumulative distribution of 
the link strengths, s is the strength and n is the number 
of links needed to describe the fibre. In somewhat 
different terms, l-F, (s) is the probability that a given 

* D u P o n t  registered t r ademark .  

fibre sample containing n links will be unbroken at an 
applied stress of  s. 

The Weibull distribution [13] is often used to describe 
the strength distribution of high modulus and strength 
fibres [1]. The Weibull cumulative distribution func- 
tion is 

F(s) = 1 - e x p [ - ( s / a )  b] s > = 0 a , b > O  

(2a) 

(2b) 

(2c) 

= aF(1 + Ub) 

[F(1 + 2/b) - F2(1 -{- 1/6)]  1'2 
CV = 

F0 + l/b) 

where ~ is the mean, cv is the coefficient of variation, 
and F is the gamma function. 

Combination of the Weibull distribution (Equa- 
tion 2a) with the weakest link relationship results in 
the following expression 

Fn(s ) = I - exp [ -n(s /a )  b] (3a) 

Further, if 2 is the length of the links necessary to 
describe the fibre and L is the actual length of the 
specimen, then, when L ~> 2, L/it very close approxi- 
mates n, and 

21/baF(1 + 1/b) 
= Ll/b (3b) 

The expression for the coefficient of variation is 
unaffected by the weakest link relationship. It is 
constant as L varies and is given by Equation 2c. It is 
also interesting to note that Equation 3a with n = L/2 
can also be derived from a Poisson model in which the 
mean number of defects per unit length with strength 
= < s is (s/a)b/it. The impossibility of distinguishing 
between this special case of  the Poisson model, which 
deals with dimensionless defects, and the classical 
weakest-link model, which considers links of  finite 
length, is due to the asssumption that L ~> 2. 

Equation 3b predicts that the logarithm of  the mean 
fibre strength will be a linear function of the logarithm 
of the specimen length with a slope of - 1lb. It has been 
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Figure 1 Strength variation along length of  the model fibre. 

observed by this researcher and others [14] that this 
expression does not adequately describe the behaviour 
of the filament strength of Kevlar as a function of 
specimen length. Generally, mean strength will tend to 
plateau to a constant value at small specimen lengths, 
whereas Equation 3b predicts a constant increase. 

2. Model description 
The modified model is based on the supposition that 
the physical model used for the classical weakest-link 
theory is correct for Kevlar, but that the requirement 
that the test length be much greater than the link 
length is not met. Therefore, the relationship for the 
cumtflative distribution function (Equation 1) is not 
valid and must be reformulated. 

Consider a fibre of which the strength can be 
adequately described by a series of  independent links 
of length 2. The strength along a segment of  this fibre 
could be represented by Fig. 1. Assume that we know 
the value of  2 and that our initial testing on this fibre 
will be done at test lengths, Li, which are integer 
multiples of the link length. That  is, 

L~ = /2, i = 1 , 2 , 3  . . . .  (4) 

The key point of this model immediately becomes 
obvious as we consider the first series of tensile tests at, 
for example, L~ = 2 (i = 1). In the random process of  
specimen selection, it is only in the very unlikely event 
when we choose that the specimen ends exactly at the 
boundaries of a link that the test specimen contains 
only one full link. At all other times, it will contain 
segments of two links. Because within links the 
strength is assumed to be constant, the amount  of the 
link included in the specimen is not relevant with 
respect to influencing the strength. Thus, the strength 
at test length L~ = 2 will follow very closely the 
cumulative distribution function 

Fl(S ) = 1 - [1 - F(s)] 2 (5) 

At test lengths which are higher integer multiples, i, 
of  the link length, the specimens will essentially always 
contain i - 1 full links plus segments of two additional 
links. The net result is that the specimen strengths will 
be based on a "weakest-link" distribution involving 
i ÷ 1 links. 
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Figure 2 Variation in the number  of  links represented in a specimen 
as a function of  position of  specimen centre point. (a) Model fibre 
from which specimens are selected; (b) L/2 = 1.5, mean  number  of  
links per specimen = 2.5; (e) L/2 = 1.75, mean number  of  links 
per specimen = 2.75. 

F~(s) = 1 - [1 - F(s)] i+l (6) 

o r  

F~(s) = 1 -- [1 -- F(s)] Li/~'+I (7) 

The practical usefulness of the derived cumulative 
distribution function relationship (Equation 6) depends 
on its being generalized to represent situations where 
the test length is not restricted to an integer multiple 
of the link length. In these cases, the continuous test 
length variable will be designated L. 

For  a given value of L, the number of links rep- 
resented in randomly chosen specimens will be either 
the largest integer in L/2 + 1 or the largest integer in 
L/,~ + 2. The number of links represented will depend 
on the position of  the specimen with respect to the 
links. Fig. 2 shows how the number of links represented 
varies as a function of the position of  the specimen 
centre point on the model fibre for L/,~ = 1.5 and 
L/2 = 1.75. Examination of these functions shows 
that for a large number of randomly chosen specimens, 
the fraction of  specimens with the larger number of  
links represented will be the fractional portion of L/2. 
The remaining fraction of specimens will have the 
lower number of links represented. For  example, if 
L/2 = 1.75, then 25% of the randomly chosen speci- 
mens will have two links represented and 75% will 
have three links represented. The mean number of 
links represented in these specimens will be, for this 
example, 2.75 or, in general, L/2 + 1. 

The more general form of  the specimen cumulative 
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distribution function based on the above discussion, 
which allows for noninteger values of L/2, is 

FL(s) = 1 -- [1 -- frac(L/2)][1 - F(s)] ~"t(L/~.)+~ 

- [frac(L/2)][1 - r(s)] int(L/;J+2 (8) 

where int(L/2) is the largest integer <~L/2, and 
frac(L/2) is the fractional portion of L/2. This relation- 
ship simplifies to Equation 7 when L/2 is an integer. 

An attractive approximation to the generalized 
relationship (Equation 8) is 

FL(s) = 1 -- [1 -- V(s)] L/;'+~ (9) 

This relationship is Equation 7 in which the restriction 
that the specimen length be an integer multiple of 2 
has been relaxed. The strength means and coefficients 
of variation have been numerically calculated for a 
wide range of  L/2 values (0.1 to 100) and for a Weibull 
distribution of link strengths with cv's of 5% to 25% 
using both exact and approximate relationships. The 
maximum difference in predicted mean strengths was 
less than 1%. The maximum difference for strength 
coefficient of  variation is less than 5% (relative). The 
error introduced by the approximate equation is 
negligible with respect to the uncertainty associated 
with available data. 

In the limits of very small and very large specimen 
lengths, the derived relationships (Equations 8 and 9) 
are physically realistic. As L/2 becomes very large 

1 - [1 - g(s)] L/~+~ -~ 1 - [1 - r(s)] L/x ( 1 0 )  

which is a form of the classical "weakest-link" relation- 
ship. As L/2 becomes very small 

1 - [1 - F(s)] L/~+I ~- g(s) (1l) 

which states that, in this situation, the specimen 
cumulative distribution function becomes that of  the 
links. This is the correct result for a continuous deter- 

ruination of the fibre strength which is what L = 0 
implies. 

Substitution of the Weibull cumulative distribution 
function (Equation 2) into the generalized expressions 
(Equations 8 and 9) results in the following relation- 
ship, 

FL(s) = 1 -- [1 -- frac(L/2)] exp [(int(L/)~) + 1)(s/a) b] 

- [frac(L/)~)] exp [(int(L/)~) + 2)(s/a) b] 

(12) 

and for the approximate form, 

FL(s) = 1 -- exp [ - ( L / 2  + 1)(s/a) b] (13a) 

This expression is particularly convenient because the 
resulting mean strength is 

aF(1 + l/b) 
g = (L/2 + 1) L/b (13b) 

The coefficient of variation of the strength is 

[V(1 + 2/b) - r2(1 + l/b)] '/2 
cv = (13c) 

r(1 + 1/b) 

which is a function only of  the Weibull parameter, b 
and is identical to Equation 2c. Unlike Equation 3b, 
Equation 13b is not derivable from a Poisson model. 

3 .  E x p e r i m e n t a l  m e t h o d s  

The strength (breaking load) of Kevlar filaments is 
determined by a technique which has been developed 
in our laboratory especially for this fibre. All filaments 
are mounted on paper tabs with an amine catalysed 
cyanoacrylate adhesive. We have found this mounting 
technique to be quite satisfactory in terms of repro- 
ducibility, convenience and mounting speed. Tensile 
testing is carried out on an "Instron" Model 1122 
tester equipped with 500 gram capacity pneumatic 

T A B L E  I Filament breaking load data: item A 

Filament 

1 2 3 4 5 6 7 8 

Test length - 0.18 cm 
Mean (dN) 4.71 4.33 4.56 4.88 4.72 4.46 4.63 5.09 
Standard deviation 0.36 0.65 0.36 0.31 0.34 0.36 0.12 0.18 
n =  10 

Test length = 1.0 cm 
Mean (dN) 4.35 4.47 4.97 4.31 4.47 4.49 4.26 5.63 
Standard deviation 0.28 0.42 0.43 0.30 0.25 0.39 0.32 0.20 
n =  10 

Test length = 2.5cm 
Mean (dN) 4.25 4.60 3.9 4.88 4.00 4.40 4.76 4.44 
Standard deviation 0.31 0.13 0.12 0.14 0.14 0.08 0.26 0.27 
n = 7  

Test length = 5.1 cm 
Mean (dN) 3.75 3.86 4,86 4.70 3.65 3.91 4.20 4.14 
Standard deviation 0.41 0.18 0.42 0.32 0.42 0.21 0.14 0.22 
N = 7  

Test length = 25.4cm 
Mean (dN) 3.93 3.37 3.95 3.90 3.73 3.31 4.29 4.24 
Standard deviation 0.21 0.76 0.22 0.57 0.30 0.65 0.47 0.23 
n = 7  

Each mean and standard deviation value represents a different filament. Total of 40 filaments tested. 
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T A B L E  I I  Filament breaking load data: item B 

Filament 

1 2 3 4 5 6 7 8 

Test length = 0.18 cm 
Mean (dN) 4.42 4.12 4.74 4.48 5.47 4.89 5.06 4.84 
Standard deviation 0.45 0.45 0.56 0.56 0.38 0.52 0.28 0.44 
n =  10 

Test length = 1.0cm 
Mean (dN) 3.88 4.31 6.11 4.75 4.91 4.22 4.80 4.45 
Standard deviation 0.29 0.31 0.51 0.40 0.66 0.26 0.59 0.26 
n =  10 

Test length = 2.5cm 
Mean (dN) 3.47 4.52 3.95 4.91 3.33 4.43 3.96 4.58 
Standard deviation 0.28 0.81 0.42 0.27 0.41 0.38 0.74 0.33 
n = 7  

Test length = 5.1 cm 
Mean (dN) 5.57 3.94 5.22 4.06 3.55 4.71 4.09 4.02 
Standard deviation 0.64 0.40 0.42 0.83 0.40 0.27 0.45 0.56 
N = 7  

Test length = 25.4cm 
Mean (dN) 4.34 3.30 2.84 3.35 3.46 34.76 3.84 3.33 
Standard deviation 0.67 0.59 0.77 0.53 1.32 1.38 0.76 0.52 
n = 7  

Each mean and standard deviation value represents a different filament. Total of 40 filaments tested. 

grips. The elongation rate was approximately 
20% rain l. Testing is done at approximately 70°F 
and 55 r.h. This we believe presents no special problems 
because of the relative intensity of Kevlar to any small 
temperature and humidity changes which may have 
occurred. 

The filament strength of three commercial samples 
of Kevlar (designated A, B and C) was characterized 
at five test lengths (0.18, 1.0, 2.5, 5.1 and 25.4 cm). For 
each test length, eight filaments were randomly sampled 
from the yarn bundle and multiple breaks done along 
the length of the filaments. For the 0.18 and 1.0 cm test 

length, ten breaks were done on each of eight filaments. 
For the 2,.5, 5.1 and 25.4 cm test length, seven breaks 
were done on each of eight filaments. In the data sum- 
mary (Tables I, II and III), each mean and standard 
deviation value represents a different filament (total of 
40 filaments sampled). 

4. Discussion 
The model deals only with a distribution of link 
strengths along a single hypothetical filament. It 
ignores any differences in the distribution between 
filaments and, therefore, is strictly applicable of data 

T A B L E  I I I  Filament breaking load data: item C 

Filament 

1 2 3 4 5 6 7 8 

Test length = 0.18 cm 

Mean (dN) 4.98 4.57 4.86 4.75 4.85 4.95 4.77 4.96 
Standard deviation 0.24 0.62 0.57 0.44 0.30 0.37 0.19 0.33 
n =  10 

Test length = 1.0cm 

Mean (dN) 4.84 4.66 4.93 5.07 4.52 4.75 4.90 4.71 
Standard deviation 0.17 0.28 0.26 0.39 0.36 0.10 0.35 0.31 
n =  10 

Test length = 2.5cm 

Mean (dN) 4.78 4.75 4.65 4.88 4.86 4.71 4.60 4.47 
Standard deviation 0.18 0.19 0.38 0.37 0.39 0.58 0.20 0.49 
n = 7  

Test length = 5.1 cm 

Mean (dN) 4.10 4.31 4.43 3.98 4.62 4.43 4.70 4.53 
Standard deviation 0.32 0.57 0.31 0.45 0.36 0.66 0.25 0.39 
N = 7  

Test length = 25.4cm 

Mean (dN) 4.06 3.93 3.41 3.50 3.62 3.75 4.14 4.00 
Standard deviation 0.31 0.73 0.83 0.49 0.40 0.77 0.62 0.20 
n = 7  

Each mean and standard deviation value represents a different filament. Total of 40 filaments tested. 
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T A B L E  IV Filament breaking load summary: item A 

Test length Breaking load Total Within-filament 
(cm) (dN) CV (%) CV (%)* 

0.18 4.67 9.0 7.9 
l 4.62 ll.7 7.2 
2.5 4.40 8.5 4.5 
5.1 4.13 12.1 7.5 

25.4 3.85 14.5 12.2 

*From joint estimate [16]. 

T A B L E  VI Filament breaking load summary: item C 

Test length Breaking load Total Within-filament 
(cm) (dN) CV (%) CV (%)* 

0.18 4.84 8.5 8.4 
I 4.80 6.7 6.1 
2.5 4.71 8.1 7.9 
5.1 4.39 10.7 9.9 

25.4 3.81 16.0 15.3 

*From joint estimate [16]. 

collected from either a sample in which all filaments 
have the same distributions of strengths along their 
length or a sample of a single filament which has 
uniform distribution of strengths along its length. In 
practice, neither of these situations is likely or very 
practical and, therefore, sources of overall variability 
within a sample must be recognized and only those 
components pertinent to the model considered. 

Only the within-filament component of strength 
variability should be used when applying the filament 
strength against test length data presented here to the 
model. A distribution in mean strength between 
filaments (the between filament component of strength 
variability) will contribute to the overall strength coef- 
ficient of variation in the yarn sample, but will not 
impact the response of average strength of coefficient 
of variation to test length. This fact is clear if one 
considers a yarn sample composed of perfectly uniform 
filaments of different strengths. For this hypothetical 
sample, the measured mean and coefficient of variation 
would be independent of test length. 

A joint estimate of the within-filament strength 
coefficient of variation at each test length was made 
(Tables IV, V and VI) [15]. If the within-filament 
variances constitute a homogeneous population, then 
this value is an estimate of the common within filament 
coefficient of variation and the conditions of the 
model are well satisfied. If the variances are not 
homogeneous, the value is an estimate of the average 
within-filament strength coefficient of variation. This 
is a departure from the assumptions of the model and, 
depending on the degree of nonhomogeneity, could 
cause significant differences between the predicted and 
observed response of strength to test length. Bartlett's 
chi square statistic indicates that, in most cases, the 
null hypothesis of variance equivalency can be rejected 
with a reasonable degree of confidence. The confi- 
dence of this rejection, however, may be erroneously 
high because of the assumption of normality made in 
the chi square statistic test. Tesing of the variance 
homogeneity using the gamma plotting technique [16], 

T A B L E  V Filament breaking load summary: item B 

Test length Breaking toad Total Within-filament 
(cm) (dN) CV (%) CV (%)* 

0. t8 4,75 12.4 9.8 
1 4.68 16.1 9.3 
2.5 4.39 17.0 11.9 
5.1 4.15 18.8 11.9 

25.4 3.48 26.5 25.2 

*From joint estimate [16]. 
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which is less sensitive to deviations from normality 
than is the chi square statistic, does not support the 
rejection of the null hypothesis of variance equivalency. 
Therefore, it is valid to assume that the jointly esti- 
mated coefficient of variation is an estimate of the 
common within filament coefficient of variation. 

The estimated within-filament strength coefficients 
of variation are, for all three items, reasonably con- 
stant for the test lengths of 5.1 cm and less (Figs 3, 4 
and '5). For these test lengths, the data are consistent 
with the model and a Weibull distribution of link 
strengths (Equation 13c). For all items, the 25.4cm 
test length coefficient variation is significantly higher 
than others. This indicates a breakdown of one or more 
of the assumptions made to arrive at Equation 13c. 
Three possible causes for this increase in coefficients of 
variation are nonhomogeneity of the within-filament 
link strength distributions from filament to filament, a 
deviation of the link strength distribution from a 
Weibull in the low strength tail region or the influence 
of particulates which could manifest also as a deviation 
from a Weibull distribution. 

The expressions for mean strength for both the classi- 
cal (Equation 3b) and the modified (Equation 13b) 
models were fitted to the overall mean breaking load 
against test length data for each item using a least 
squares technique. This was done by first estimating 
the overall coefficient of variation of link strengths 
from the 5.1 cm and lower test length data of each item 
(Table VII). With the appropriate value of the Weibull 
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Figure 3 Within-filament breaking load coefficient of variation as a 
function of test length, item A, Error bars are 95% confidence 
limits, 
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Figure 4 Within-filament breaking load coefficient of variation as a 
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Figure 5 Within-filament breaking load coefficient of variation as a 
function of test length, item C. Error bars are 95% confidence 
limits. 

b parameter (Equation 13c), the expressions were then 
fitted to determine the best values of the adjustable par- 
ameters. For the modified model (Equation 13b), best 
values of both the Weibull parameter, a, and the link 
length, 2, were determined. For the classical model 
(Equation 3b), in which the link length 2 is of no 
consequence (a result of the assumption that L >> 2), 
a and 2 are not resolvable and a best value of a2 (l/b) 

was determined. 
The response of the measured overall filament 

strength to test length is described well by the modified 
model (Figs 6, 7 and 8). The most significant feature 
is the levelling off of the mean strength at lower test 
lengths, which is consistent with the data. This corre- 
sponds to the situation in which the test length is 
comparable to the model link length. At test lengths 
much smaller than the link length, the measured mean 
strength will be independent of the test length and will 
equal to the mean link strength. The classical model 
predicts that the measured mean strength continues to 
increase at low test lengths, which is clearly not the 
case. Whereas the fit of the modified model is good, it 
is not able to completely describe the data within the 
95% confidence limits. This is likely due to deviations 
of the distribution of link strengths from the assumed 
Weibull distribution. Further work is now underway 
to determine the distribution of link strength by com- 
putation methods which do not place any restrictions 
on its shape. It is anticipated that this will improve the 
fit to the data significantly. 

5. C o n c l u s i o n s  
A weakest-link model for fibre strength, in which the 
link length is a parameter, can be suitably formulated 

T A B L E  V I I  Estimated overall within filament CV and 
Weibull parameter 'B' 

Item CV (%) 'B' 

A 6.9 18 
B 10.8 11 
C 8.2 14.5 

mathematically without any conditions as to the size 
of test length with respect to the link length. 

This model describes very well the filament strength 
mean and coefficient of variation response to test 
length of three commercial Kevlar aramid yarn 
samples. The significant increase in the coefficient of 
variation at the longest test length (25.4 cm) is most 
likely to be a result of a deviation of the link strength 
distribution from the Weibull in the low strength tail 
portion which becomes very influential in determining 
the observed distribution of strengths when test length 
becomes substantially larger than the link length. 

The fit of the model to the data indicates that, with 
respect to within-filament strength variations, the 
filaments of these samples can be considered to be a 
series of approximately 1 cm length uniform strength 
links of which the strengths are identically distributed 
random variables with a common Weibull distribution. 
A likely physical property of the filaments which 
would result in within-filament strength variability of 
this nature is denier variation. Additional investigation 
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Figure 6 Mean filament breaking load as a function of test length, 
item A. Error bars are 95% confidence limits. (e)  Table IV; ( ) 
Modified weakest link: Equation 13b with a = 5.39 dN, 2 = 0.54 cm, 
b = 18; ( - - - )  Classical weakest link: Equation 3b with b = 18. 
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Figure 8 Mean filament breaking load as a function of  test length, 
item C. Error bars are 95% confidence limits. (e)  Table VI; ( ) 
Modified weakest link: Equation 13b with a = 5.14 dN, 2 = 0.88 cm, 
b = 15; (-  ) Classical weakest link: Equat ion 3b with b = 15. 

as to the relationship between the strength and denier 
variation along Kevlar filaments is now underway. 
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